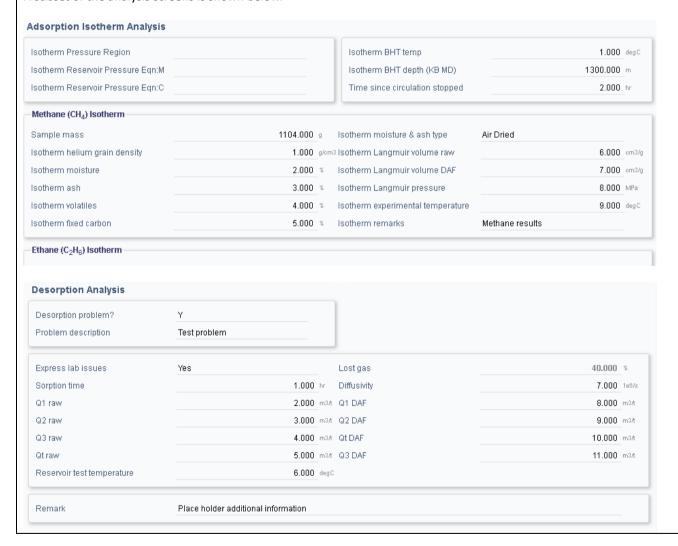


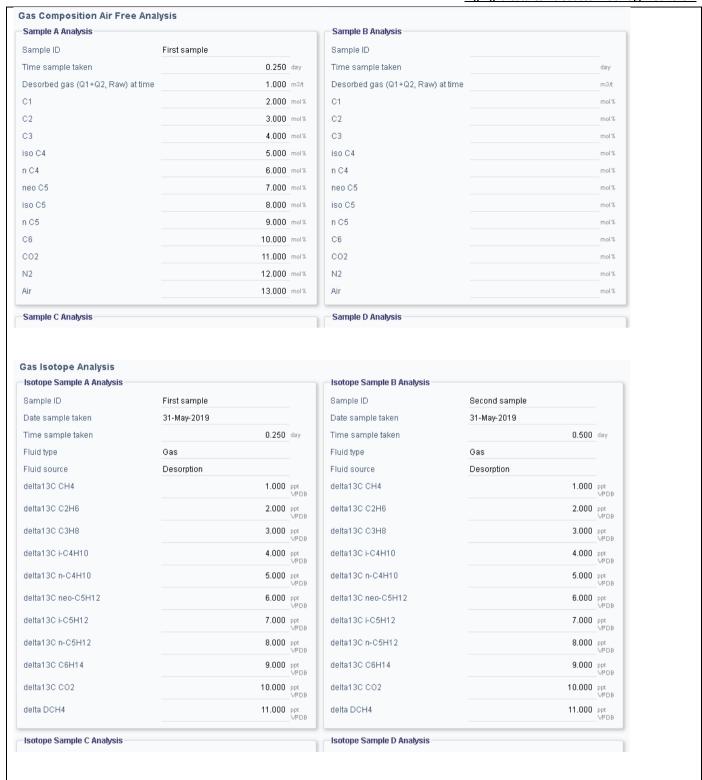
SOFTWARE RELEASE NOTES

dbMap/Web Version 2019.2

Overview

dbMap/Web 2019.2 sees the introduction of new Well Core Analysis functionality as well as further enhancements to the Petrosys Well Log Viewer with the addition of templates, display of formation tops and cross-plots.


Well Core Coal Analysis


Support for storing detailed information has been added for Samples and several analysis types: Adsorption isotherm, Desorption, Gas composition, Isotope, Petrology, Proximate, Rock evaluation, Rock mechanics and Ultimate.

In addition to Data management functionality such as import, creation of new records, editing existing records and deleting, there are also many calculations automatically performed on screens including ratios and summing of values.

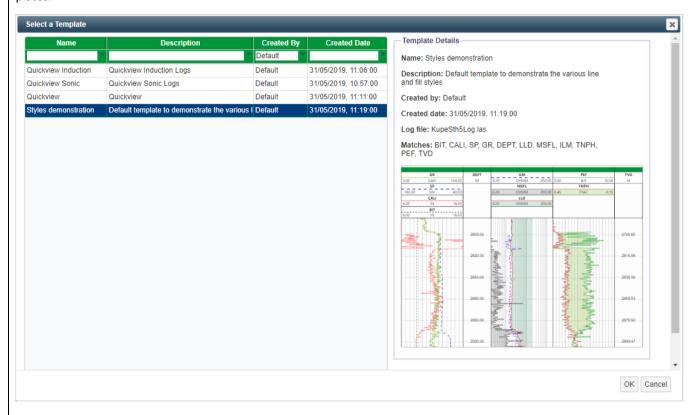
The functionality has been developed on top of the PPDM 3.9 Sample Analysis module and the attributes for each analysis type can be tailored by clients.

A subset of the analysis screens is shown below.

o Max ginite Reflectance				1.000 2.000		Vro Random VRE Alginite					5.000 % 6.000 %
tumen Reflectance tuminite Reflectance	3.000 % VRE Bitumen 4.000 % VRE Bituminite										7.000 % 8.000 %
	~	Α		٥,	o		~	0, 6		~	w .
Group Vitrinite	1.000	%mmf 2.000	Sub group Telovitrinite	% 10.000	%mmf 12.000	Macerial Textinite	1.000	%mmf 5.000	Sub macerial	%	%mmf
						Texto-ulminite	2.000				
						Eu-ulminite	3.000	7.000			
			Detrovitrinite	18.000	9.000	Telocollinite Attrinite	4.000 5.000				
				10.000	3.000	Densinite	6.000	9.000			
						Desmocollinite	7.000				
			Gelovitrinite	27.000	0.000	Corpogelinite	8.000				
						Porigelinite Eugelinite	9.000		_		
Liptinite	3.000	4.000				Sporinite	11.000				
						Cutinite	12.000	20.000			
						Resinite	13.000				
						Liptodetrinite Alginite	14.000 15.000		Telalginite	16,000	
						. ngito	15.000		Lamalginite	16.000 17.000	8.000
									Non-fluorescing Alginite	18.000	
						Suberinite	19.000				
						Fluorinite Exsudatinite	20.000				
						Bituminite	22.000				
nertinite	5.000	6.000	Telo-inertinite	72.000	0.000	Fusinite	23.000				
						Semifusinite	24.000				
			Date to all the			Funginite	25.000				
			Detro-inertinite	53.000	0.000	Inertodetrinite Micrinite	26.000 27.000				
			Gelo-inertinite	28.000		Macrinite	28.000				
Other / Non Plant Organic Matter						Zooclasts	29.000				
						Bitumen	30.000				
						Pyrobitumen Organoclausts	31.000 32.000				
Minerals						organionadoto	32.000		-		
roximate Analysis Relative density foisture				2.0	000 g/cm3 Vol	ed carbon					4.000 % 5.000 %
Ash				3.1	000 % Pro	ximate moisture &	ash type	Equilibrium	1		
temark		Proximate Ar	alysis remark								
Preparation method	s	3olvent Extr	acted		Sar	nple lithology		С	oal		
Analysis method	F	Rock Eval 8	(Pyrolysis) / Le	co (TOC)	We	ight after acid w	ash			1104.0	00 g
тос				1.000	wt% HI[Hydrogen inde	[]			300.00	00 mg/g/wt%
S1-volatile hydrocarbon cont	ent			2.000	mg/g OI[Oxygen index]				400.00	00 mg/g/wt%
S2-HC generating Potential				3.000	mg/g P1-	production inde	ex.			0.40	00
83-organic CO2				4.000	mg/g S1+	-82 potential yie	eld			5.00	00 mg/g
DO 10 1 1 1 1				5.000	mg/g S2	183				0.7	50
PC [Pryolysized carbon]				6.000	degC S1	*100/TOC				200.00	00
PC [Pryolysized carbon] T max				7.000	wt% Inte	rpreted keroge	n type	T	ype IV		
	lent										
T max		Mud									

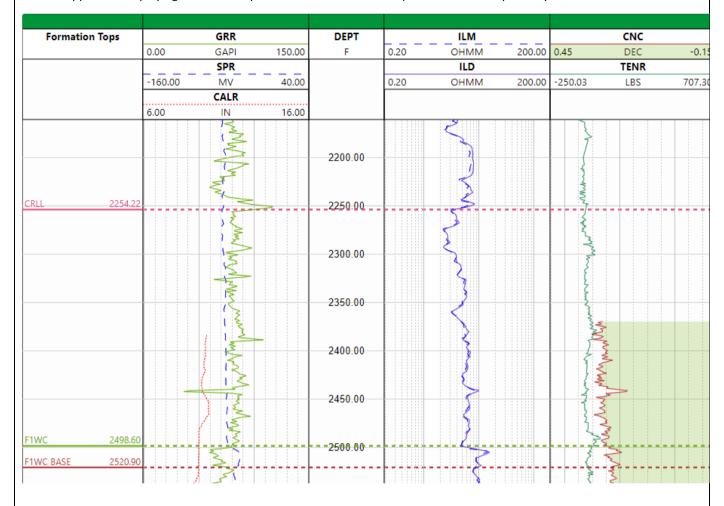
Analysis type	As Received			Cohesion		8.000	
Test condition	TBA			Plug orientation	Horizontal		
Bulk density		1.000	g/cm	3 Dynamic shear modulus		9.000	psi
Confining pressure		2.000	psi	Dynamic bulk modulus		10.000	psi
Compressive strength		3.000	psi	Dynamic Youngs modulus		11.000	psi
Static Youngs modulus		4.000	psi	Dynamic Poissons ratio		12.000	
Static Poissons ratio		5.000		Ultrasonic wave velocity shear		13.000	ft/s
Ultrasonic wave velocity		6.000	ft/sec	Tensile strength		14.000	psi
compressional				Effective mean stress (confining)		15.000	psi
Jnconfined compressive strength (UCS)		7.000	psi -				
Remark	Placeholder remark						-
	Placeholder remark						
litimate Analysis	Placeholder remark Kerosene		-	Total sulfur		7.000	×.
Iltimate Analysis Sample preparation		1.000		Total sulfur Organic sulfur		7.000 8.000	
Iltimate Analysis Sample preparation Carbon		1.000 2.000	%				%
Iltimate Analysis Sample preparation Carbon Hydrogen			X X	Organic sulfur		8.000	%
Iltimate Analysis Sample preparation Carbon Hydrogen Nitrogen		2.000	X X	Organic sulfur Inorganic sulfur		8.000 9.000	%
Sample preparation Carbon Hydrogen Nitrogen Sulfur		2.000 3.000	X X	Organic sulfur Inorganic sulfur Atomic H/C		8.000 9.000 23.833	%
Remark Jitimate Analysis Sample preparation Carbon Hydrogen Nitrogen Sulfur Oxygen Iron		2.000 3.000 4.000	X X X	Organic sulfur Inorganic sulfur Atomic H/C Atomic O/C		8.000 9.000 23.833 3.753	%

Remark

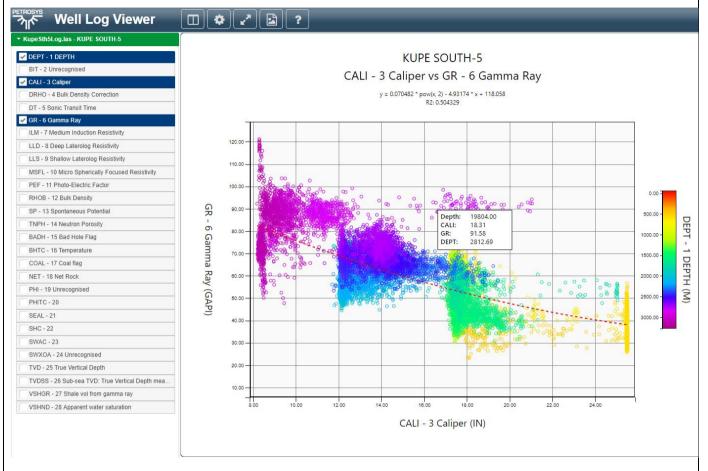

Placeholder remark

Well Log Viewer Enhancements

The new integrated well log viewer introduced in dbMap/Web 2019.1 has been further-improved, adding several new features:


Templates

Support for user-defined well log templates which incorporate track and curve layouts and styles. Once a well log view is configured, it can be saved as a template. Templates can be applied to any well log and provide a quick-and-easy method of displaying log curves with a consistent layout and style. Quickly switch between different views of your log data using templates.


Formation Tops

Added support for displaying formation tops from the database in a separate track and optionally across all tracks.

Cross-plots

A new display mode has been added to show the well log data in a cross plot. The cross-plot mode supports customizable axes and line of best fit calculations.

Wrapping

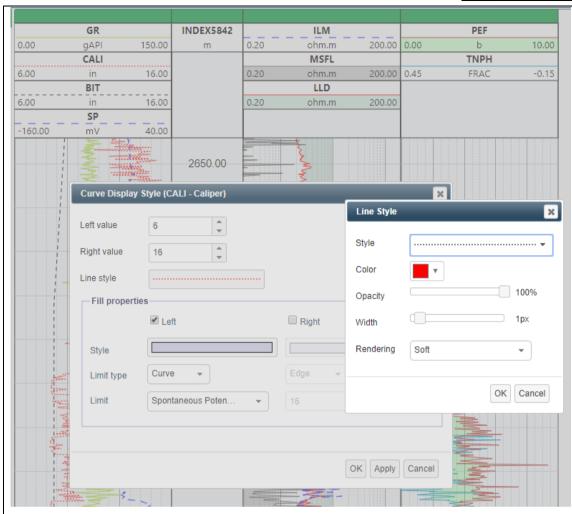
Well log curve data can optionally be wrapped to show the extents of data spikes. Up to two levels of wrapped data can be displayed.

Other Enhancements

- Support for selecting from multiple frames of DLIS data.
- The Well Log Viewer composite and cross-plot displays can now be exported to a PNG image file with a single click.
- Reverse a curve's display range with a single click.

Overview

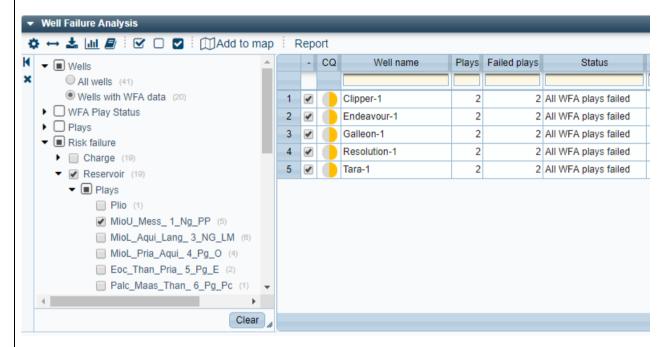
dbMap/Web 2019.1 sees the introduction of the Petrosys Well Log Viewer as well as a Well Failure Analysis module and Common Risk Segments polygons support for PLDB.


Well Log Viewer

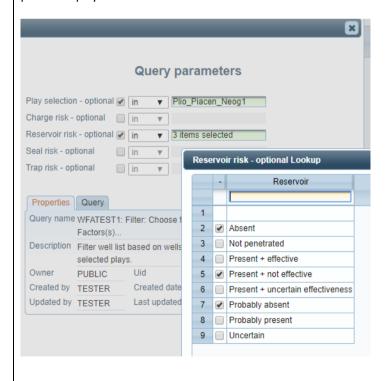
A new integrated well log viewer has been added to dbMap/Web which provides a quick and easy method to interactively view the well log curves within catalogued LAS and DLIS files.

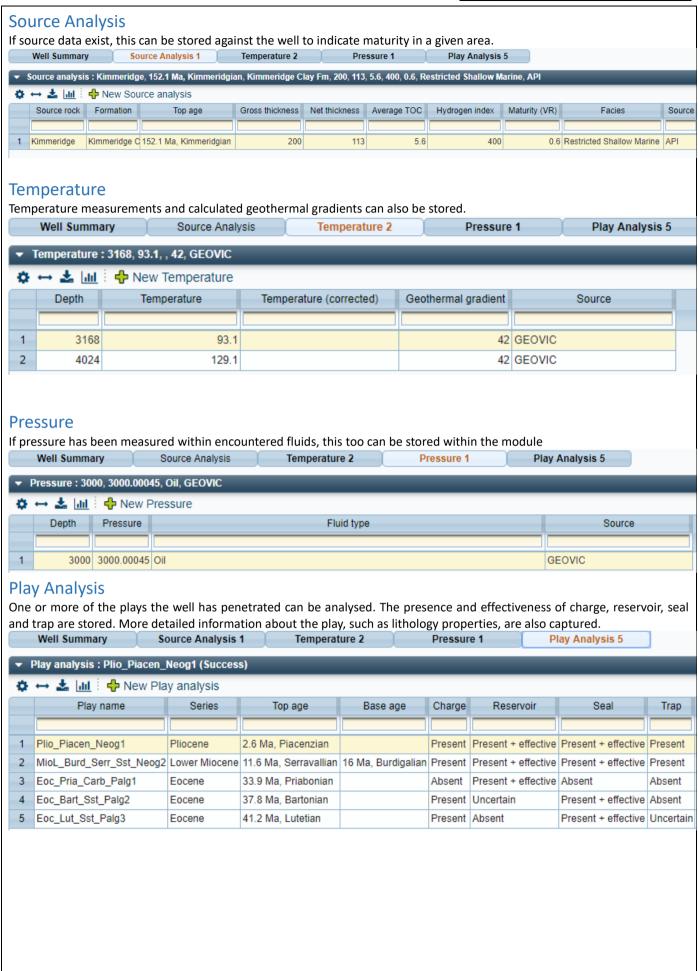
The new well log viewer provides the following features:

- Support for catalogued LAS and DLIS files.
- Interactive display of multiple tracks.
- Interactive display of multiple curves per track.
- Linear and logarithmic track value scales.
- Modify curve line style (color, style, width, opacity).
- Modify curve left and right fill styles (color, opacity, fixed limit, fill between curves).
- Modify major and minor graticule display styles (color, style, width, opacity, frequency).
- Modify curve display range (left and right values).
- Interactively re-order tracks and curves using drag and drop.
- Zoom, pan and cursor tracking.

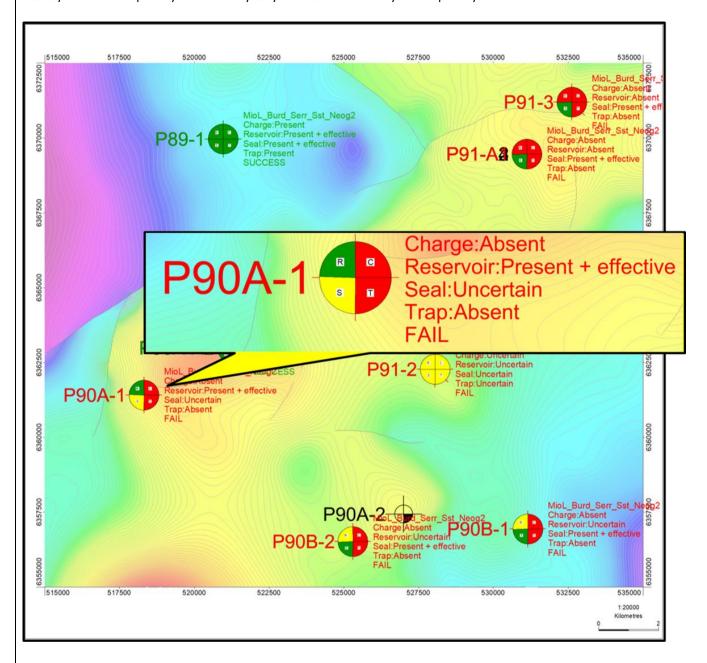

Note: A separate license is required to access the well log viewer. Please contact Petrosys support for more details.

Well Failure Analysis


A new module to conduct 'Well Failure Analysis' is now available. This module allows companies to analyse data from existing wells to determine where plays have been successful and unsuccessful. The reasons for the failure in the unsuccessful plays can be queried and mapped, allowing better decisions or research to be conducted ahead of future wells.

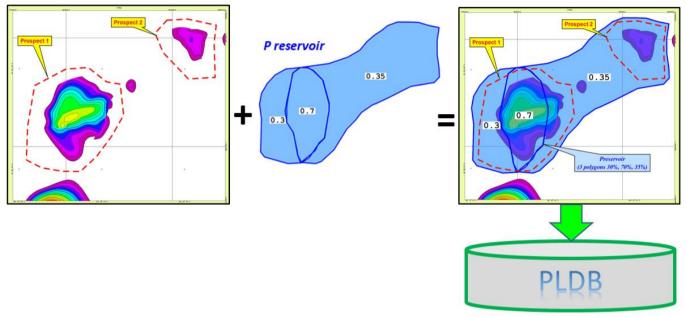

Filters and Queries

Users can filter on specific play names and high level information about where success/failure exists and the reasons for this failure.


In addition, more detailed queries can be run, for example; to identify which wells within a given play(s) have failed due to a particular play element.

Well Failure Analysis in PRO

Stop-light style displays, incorporating success and failure analysis results for wells are now even more easily created inside Petrosys PRO. This capability makes it very easy to visualise and analyse risk spatially.



Prospects & Leads

Common Risk Segments

Petrosys Prospects & Leads module now supports storing Common Risk Segment (CRS) polygons against play interval chance factors and using spatial comparison with the Prospect or Target polygon to determine the appropriate Play chance factors to use in the resource computation.

The CRS polygons are expected to have an attribute defining the risk for each polygon, and can be loaded into the database using the Petrosys PRO Spatial Data Translator, from data sources such as shape files exported from GIS-PAX Player software.

Detailed Release Notes Summary dbMap/Web 2019.2

Enhancements

dbMap/Web - Client
 74341 PLDB activated for Origin
 dbMap/Web - General
 72863 Core Coal Analysis
 73476 Well Log Viewer - Enhancements
 74367 Well Perforation data loader extended to support additional columns
 74521 Well Failure Analysis - Enhancements to data loading in 2019.2
 dbMap/Web - PLDB
 69405 PLDB - Size of distribution variable values has been increased
 72682 Prospect roll-up now produces more consistent results for Prospects with single targets

2 entries

Detailed Release Notes Summary dbMap/Web 2019.2

Bug Fixes

dbMap/Web - PLDB

Correct play probability factors are now shown for target scenario resource computations

Performance of PLDB_TARGET_POLYS view improved

Petrosys Release dbMap/Web 2019.2

Detailed Release Notes

dbMap/Web - Client

Enhancements

PLDB activated for Origin

74341

PLDB functionality has been enabled.

dbMap/Web - General

Enhancements

Core Coal Analysis

72863

A new coal core analysis module has been added to our well functionality. The PPDM 3.9 Sample Analysis model is used to manage Samples as well as analysis for :

- > Adsorption isotherm
- Desorption
- Gas composition
- Isotope
- Petrology
- Proximate
- Rock evaluation
- Rock mechanics
- ➤ Ultimate

Well Log Viewer - Enhancements

73476

A number of enhancements have been made to the Well Log Viewer introduced with dbMap/Web 2019.1.

Templates

Support for user-defined well log templates which incorporate track and curve layouts and styles. Once a well log view is configured, it can be saved as a template. Templates can be applied to any well log and provide a quick-and-easy method of displaying log curves with a consistent layout and style. Quickly switch between different views of your log data using templates.

Formation Tops

Added support for displaying formation tops from the database in a separate track and across all tracks.

Crossplots

A new display mode has been added to show the well log data in a cross-plot. The cross-plot mode supports customizable axes and line of best fit calculations.

Wrapping

Well log curve data can optionally be wrapped to show the extents of data spikes. Up to two levels of wrapped data can be displayed.

Other Enhancements

- Support for selecting from multiple frames of DLIS data.
- The Well Log Viewer display can now be exported to a PNG image file with a single click.
- Reverse a curve's display range with a single click.

Well Perforation data loader extended to support additional columns

74367

The well perforation data loader has been extended to support importing additional columns.

Well Failure Analysis - Enhancements to data loading in 2019.2

A series of enhancements and fixes have been made to the data loading functionality for Well Failure Analysis data. Changes include:

- Reference Elevation values including 'SS' are now supported. In some cases they are automatically translated to standard values such as 'MSL'.
- > The allowed length of Data source values has been increased
- > More information is now provided when the data to be imported has invalid numbers
- > Play analysis well test types are now automatically created if they don't already exist
- > The allowed length of Well result has been increased.

dbMap/Web - PLDB

Enhancements

PLDB - Size of distribution variable values has been increased 69405

The size of PLDB resource computation distribution variable values has been increased to support analysis of larger areas.

Prospect roll-up now produces more consistent results for Prospects with single targets

The Prospect rollup of target resources now produces more consistent results for prospects with a single target. Previously you could get slight differences in the Total MMBOE distribution values compared with the target's original values.

dbMap/Web - PLDB

Bug Fixes

Correct play probability factors are now shown for target scenario resource computations

When creating a new Prospect target scenario resource computation, the Probability factors tab now shows the correct Play chance factors. Previously it just showed the total as 1.

Performance of PLDB_TARGET_POLYS view improved 74305

The performance of the database view PLDB_TARGET_POLYS has been significantly improved. Where previously it could take 5 minutes to select all records from the view, it now takes about 2 seconds.

Detailed Release Notes Summary dbMap/Web 2019.1

Enhancements

dbMap/Web - Client

- Geological Province changed to Basin in the wells tree filter (Santos)
- Row-based security has been added for Wells (Origin)
- 73537 Easting/Northing values are now shown on well header (Greymouth)
- Three new columns have been added to the view FRAC SPOTFIRE VW (Santos).
- 73879 Spotfire link updated to latest version of Sportfire (Santos)

dbMap/Web - General

- 73014 Well Failure Analysis
- 73193 The formation summary records are re-calculated when using the data loader
- 73475 Well log viewer
- Performance improvements have been made to the Well log curve summary report
- CQ batch job has been optimised and can now continue from previous run
- 72942 Dashboard pie charts have been changed to donut charts
- Performance improvements have been made to displaying panels by caching the buttons

dbMap/Web - PLDB

New tree filter options have been added for Onshore and Offshore

Detailed Release Notes Summary dbMap/Web 2019.1

Bug Fixes

dbMap/Web - Client

73606 Catalogued items are recorded with the media type of Electronic file (Origin)

Users with a full stop in their username can now use web mapping

dbMap/Web - General

13274 Lookups in the Advanced search query builder no longer cause the embedded browser in PETROSYS PRO to crash

73928 Aliases can now be created for Formations

74106 Well log browser screen - Depths now have a space comma instead of a space as the thousand separator

Petrosys Release dbMap/Web 2019.1

Detailed Release Notes

dbMap/Web - Client

Enhancements

Geological Province changed to Basin in the wells tree filter (Santos)

"Geological province" replaced by "Basin" for consistency with SANTOS DATA HUB (PPDM).

Row-based security has been added for Wells (Origin)

Row-based security, that uses the well's confidential_type column as been added for Origin.

Easting/Northing values are now shown on well header (Greymouth)

The Well header panel how shows Easting/Northing values.

Three new columns have been added to the view FRAC SPOTFIRE VW (Santos).

The three new columns added to the view FRAC_SPOTFIRE_VW are Closure Gradient, Pore Gradient and Adjusted KH.

Spotfire link updated to latest version of Sportfire (Santos)

The link 'Laboratory Data (LIMS)' on the Well panel was updated to match the latest configuration of Spotfire.

dbMap/Web - Client

Bug Fixes

Catalogued items are recorded with the media type of Electronic file (Origin)

A bug with cataloguing RM items has been fixed so they are categorised as 'Electronic file' Media type.

Users with a full stop in their username can now use web mapping 73365

Fixed a bug causing mapping to fail for users with a full stop (.) in their username.

<u>dbMap/Web - General</u>

Enhancements

Well Failure Analysis

73014

A new module to conduct 'Well Failure Analysis' is now available. This module allows companies to analyse data from existing wells to determine where plays have been successful and unsuccessful. The reasons for the failure in the unsuccessful plays can also be queried and mapped, allowing better decisions or research to be conducted ahead of future wells.

The formation summary records are re-calculated when using the data loader

When importing records via the data loader, the formation summary records will be re-calculated.

Well log viewer

73475

A new integrated well log viewer has been added to dbMap/Web which provides a quick and easy method to interactively view the well log curves within catalogued LAS and DLIS files.

Note: A separate license is required to access the well log viewer. Please contact Petrosys support for more details.

Performance improvements have been made to the Well log curve summary report

The well log curve summary report is now faster to generate.

CQ batch job has been optimised and can now continue from previous run

Confidence and Quality (CQ) batch job has been optimised to be faster with a new option added to continue from the last run.

Dashboard pie charts have been changed to donut charts 72942

All pie charts on all dashboards in dbMap/Web have been changed to donut charts that are easier to read and now have colors that are consistent with other charts.

Performance improvements have been made to displaying panels by caching the buttons

By caching the panel buttons, panels are faster to load and display on the web page.

dbMap/Web - General

Bug Fixes

Lookups in the Advanced search query builder no longer cause the embedded browser in PETROSYS PRO to crash 73274

A bug causing the embedded browser to crash when a user activated the advanced search and tried to select values from a lookup has been fixed; only the embedded (PETROSYS PRO) browser was affected.

Aliases can now be created for Formations

73928

A bug that prevented Aliases from being added to Formations has been fixed.

Well log browser screen - Depths now have a space comma instead of a space as the thousand separator 74106

Previously on the well logs browser screen, depths that were larger than 999 were displayed with a space as the thousand separator in lists. They are now displayed with a comma instead. For example depths are now formatted as 1,234.56

dbMap/Web - PLDB

Enhancements

New tree filter options have been added for Onshore and Offshore 70509

New filter options for Onshore and Offshore have been added to the tree filter for Prospects.